
12 May – June 2015

Version control technologies have evolved significantly since 
the 1970s, particularly as a result of workstation-based 
development. Processes and policies built around trying to 

manage how software flows to and from workstations is challenging. 
With flexible process enablers, like git, different approaches to this 
problem are available, which has unfortunately led to conflicting 
development cultures. In the git sub-culture, there is a core question 
that boils down to whether you really want to know what is in your 
sausages (change history) or not. In concrete terms, there are process 
questions of how much interaction developers have with central 
repositories, including when and why, and then what library managers 
do with what is delivered by developers. This article describes why 
you need to look at this question and how to choose which approach 
to use to manage your software. It also will discuss some roles and 
responsibilities you need to consider that may change when using git.

Preamble
Bob and Steve are good friends and colleagues. Every Thursday, 
the two of them go out to the food truck at the corner. Bob 
always orders a sausage with the works. Steve likes his simple: 
just brown mustard. While Bob joyfully eats his in large bites, 
juices rolling off his chin, Steve savers every morsel and flavour 
that comes from the tasty indulgence. Bob often looks at Steve 
with a bit of disdain, thinking that he overthinks his lunch, 
while Steve wonders how Bob does not get indigestion.
Back at their desks, side by side, they continue working on 
their shared project. Just as he ate his sausage, Bob prefers to 
check-in his code only in big bites, once everything is tested 
and perfect. Steve, on the other hand, saves every change he 
makes, recording lengthy dissertations about the purpose of 
each change, even if it does not work yet. Bob thinks Steve is a 
bit obsessive about his change history, while Steve thinks Bob 
is being obsessive about not wanting to show any work that 
does not test cleanly. To each, this is a matter of pride. Their 
philosophical disagreements have even become legendary, to the 
point that the library manager, Jan, has had to break up some 
rather heated arguments over who is working the right way.
Jan has become an expert in eye-rolling at the two colleagues. 
At the end of the day, when it comes time to release code, both 
developers deliver the same high quality delicious sausage. The 
code moves cleanly through the deployment process and rarely, 
if ever, is there an issue, so why the arguments? This question of 
how to work seems to mean so much to both Bob and Steve, but 
when Jan gets the code, it all seems so nonsensical.

What you have just read was mostly fiction, based on true 
events, with the names changed because our legal department told 
us we had to – you know who you are. The question of Sausage 
Making, as the git community calls it, is a core philosophical 

disagreement in many organizations, and you will probably 
encounter it. The root cause of this disagreement calls into 
question how people fundamentally view their jobs, the type of 
communication they have with others, and the pride in their own 
work. For the author’s part, the key advice here is not to ignore or 
minimize the impact of this question. In order to understand it, 
in a NonStop context, we need to look back in time, into our own 
history, and look at how code has been managed historically.

A Brief History of Culture
In the beginning, we had EDIT and TAL, but no tools. Our code 

sat in groups of Guardian sub-volumes that we fixed in place. As 
time passed, and we patched code by compiling it in production, 
we realized we needed to keep official copies and work in progress. 
Deployment became people typing and later scripting “FUP DUP”. 
In the early 1980s, someone had this idea to try to port some 
standard SCM tools. Then came CONTROL and later RMS, which 
both did things differently, but we finally had version numbers, 
change logs, and central repositories. At the same time, the outside 
world was evolving through SCCS, RCS, PVCS, CVS, and then 
Subversion. Still, version numbering and central repositories 
reigned. The cultural impact was not entirely subtle, but important: 
quality == good; clutter == bad.

In the beginning, we were motivated only
to record finished products.

In order to reduce the massive numbers of versions that would 
result from normal developer activities, we, as a culture, kept our 
interactions with the central repository to a minimum. It was 
natural. That and no one likes SCM systems anyway, right? 

Then came the Enterprise Toolkit (ETK) and everything went 
into the proverbial loo. The idea of checking out code, making 
a change, and checking it back in became impractical for the 
NonStop-based repositories. Tools soon emerged to deal with that 
but not before customers had moved their code to off-platform 
repositories like CVS and Clear Case™. Suddenly, NonStop was 
isolated. Interactions with the NonStop repositories became even 
more infrequent (and painful). Some customers stopped storing 
code on the NonStop and just pushed objects.

But by 2007, the World as a whole had moved on and left 
NonStop behind, which is unfortunately where we still are 
today. In the Wider World, people were playing with Linux-style 
approaches to code management that had theoretical roots back in 
the late 1980s, but would not see production for some time – the 
Distributed Version Control System (DVCS), like git and Mercurial. 
These systems greatly improved workstation-based development 
by allowing history to be shared and changes to be added without 
constant contact with the central repository. This was actually 

When You Make Sausages, Do You Really 
Want to Know What Is Inside?

Randall S. Becker >> President >> Nexbridge Inc.



13www.connect-community.org

revolutionary – not technologically, systems like ClearCase™ 
had some of that, but because of its cultural impact. The DVCS 
allowed two developers to commit their code in isolation, and 
then combine the code later. Branches became lightweight, easy to 
create, deliver, and destroy when no longer needed. Culturally, this 
change allowed developers who were previously frustrated by the 
need to always be connected to the central repository, to keep their 
own private change histories – some of us call those research notes. 
These private histories became a trace or footprint of your work.

For security managers and intellectual property policy writers, 
workstation-based development was the stuff of nightmares that 
continues to this day – but that is another lengthy topic to be 
discussed in the next article.

In git, you have control of your own footprint.

For managers, being able to see all of the research notes was 
a boon to track what people were doing and whether there were 
potential quality issues slipping in. As you might guess, this was 
not received well by some developers. This negative reception 
was actually unnecessary but by the time git got to it, it was too 
late, culturally. In git, this footprint is only visible if the developer 
chooses to share it. The impact pushed further down the path of 
minimal interactions with the repository; but in a DVCS, this is 
rather like not saving your work in the editor. Resist committing 
at your own risk, at least according to Steve. Bob was in the other 
camp, wanting only to commit work that was perfect.

The DVCS Divide
So here we are, in the present, facing a question of sausage 

making. It is your development group who really needs to decide, 
do you want to know what is in the sausage - do you want to see the 
developer footprints, or do you just want to see the final product. In 
git, you can do either, or both. This is mostly a matter of culture and 
process. In my previous article, we saw how you can use merge-
squash to make the final deliveries immutable – the git community 
calls it atomicity if you are Googling this. The same technique 
applies to changes being pulled into your integration branch. Let’s 
take a look at how the sausage makers work.

Figure 1 Bob's Ideal View of the World

From Bob’s perspective, the repository where he works contains 
the development branch and his own topic branches. Topic 
branches are the light-weight branches where you make changes 
for a specific unit of work, from a bug-fix to a project. Bob’s topic 
branches are very small, containing only one commit for the work 
he has completed. Once he is ready, Bob pushes his topic branches 
to the development repository where Jan merges them into the 
main development branch. It is actually up to Jan how to sequence 
Bob’s changes into the integrated development branch. Bob can 
continue to work on the second fix either off the same origin 

point as his original change, or build on top of it. That is actually 
dependent on the nature of the fix.

Figure 2 Steve's Ideal View of the World

As with Bob, from Steve’s own perspective, the repository where he 
works contains the development branch and his own topic branches. 
Steve’s topic branches are longer than Bob’s because they contain his 
intermediate changes though the final commit, at which point, he 
pushes his topic branches to the development repository where Jan 
merges them into the main development branch. Jan can choose to 
perform a merge-squash to treat Steve’s work as a single commit, or 
can take the entire history. Like Bob, Steve also can continue to work 
on the second fix either off the same origin point as his original change, 
or build on top of it. If you are a small shop, this is probably the extent 
of the process and decisions you need to look at initially. 

Working Together on a Project
However, if Steve and Bob are part of a larger team, you will 

need to add a layer to the picture when the two work on a project 
together, because things become a bit more complicated as 
they share code. In fact, the roles and responsibilities are pretty 
much the same, but unless Jan wants to stay in the middle of the 
arguments between Steve and Bob, the two of them are going to 
have to learn put on Jan’s proverbial hat – that also means that the 
team maintains proficiency and backup skills for the merge process, 
something that is essential in an environment with many branches.

Working together means having your own integration branch.

When you decide to have two members of your team work on a 
change together, and the change takes more than a few days – like an 
ATM key management enhancement – they are probably going to 
have to have an integration branch for that change. There is really no 
difference compared to the main development branch managed by 
Jan, except it only contains changes for the specific fix that Bob and 
Steve are working on. Bob can keep his sausage making to himself, 
while Steve can continue to write a lot of history. When it comes time 
to sharing changes with each other, Bob can merge his changes onto 
their ATM_Key_Enhancement_1234_Branch, while Steve rebases 
to pick those up, or Steve can merge his changes and Bob can rebase, 
or both. That is how they keep in sync with each other on their ever-
growing common branch. Pretty cool? Actually, mostly for Steve. Bob 
probably might think he won’t like this approach much because it does 
mean that their common branch may contain more than one commit. 
However, if they agree, collectively, that only working changes must be 
shared, then Bob actually can be the happy one, while Steve will have 
to wait to rebase or merge until he is at a stable point. It is still pretty 
cool, because the history is kept intact for both of them. If Bob insists 

www.connect
-community.org
http://www.connect-community.org


15www.connect-community.org

Having a good process design and cookbook of work instructions 
is important so that everyone knows and agrees on what they 
are supposed to do and when. The branch pointer, ATM_Key_
Enhancement_1234_Branch, would first be on Shared fix 1, and 
then move to Shared fix 1 Squashed. Jan would use that branch 
pointer, to merge the change into the develop branch.

The team can even can even choose to drop Steve’s and Bob’s 
branches as part of regular maintenance, which will orphan the 
commits along their branches and cause them to be marked for 
removal during a git garbage collection. But Steve still has the 
option to retain his own history in his repository for his own 
research notes.

Production should never see the insides of a sausage.

But none of the details of these changes should ever make it to 
production. As the previous article discussed, when the final code 
was delivered, the detailed footprints disappear into the atomic 
immutable commit that represents the release itself.

Conclusion
The details of sausage making are of concern when thinking 

about how developers work and keeping them productive. Often, 
the repository manager is the arbiter of the philosophical disputes 
discussed here, but their primary role is to ensure that quality 
code deliveries make it to production. These footprint discussions 
are valuable because, ideally, they improve how developers work 
together and how both options can co-exist. Consider carefully 
whether footprints are essential to your business, particularly if 
you are conducting audited research. But mostly, just make sure 
that the sausages taste good by the time they are finally served to 
your customers. 

that he does not want to see Steve’s history, then Steve can use a merge-
squash to – remember what Jan can do? – publish his changes, so their 
joined history is also clean. By the time Jan gets it, all conflicts are gone 
– both in code and interpersonal. And better still, the development 
branch still only contains functionally consistent commits. And that 
makes the quality of delivered code higher.

Figure 3 Three Repositories Working Together

In the above diagram, Bob and Steve are collaborating on a fix. 
Either Bob or Steve could have done the rebase merge and delivery, 
but in this example, Steve was chosen. Bob’s repository contains an 
abridged image of the history, much to Bob’s delight, although if he 
chooses to fetch all branches, he can see Steve’s work. Technically, 
the Shared fix-1 commit is actually the same as Bob’s initial fix, 
and the squashed commit could be done either in Steve’s repository 
or on the server, depending on who is performing that operation. 

Randall S. Becker is a speaker, author, and consultant on Policy and Process that delivers continuous availability. He is an expert in Software 
Configuration and Change Management since 1989 and has spoken at many NonStop and community events. Randall can be contacted at: 
+1.416.984.9826 or rsbecker@nexbridge.com. 

www.connect
-community.org
http://www.connect-community.org
mailto:rsbecker@nexbridge.com

